# Low Carbon Energy Capital Project

# Carbon, Capture, Use, and Storage (CCUS) Team - Initiative 1

Makpal Sariyeva, Paty Hernandez, Brad Peurifoy Faculty Mentor: Charles McConnell

October 9<sup>th</sup>, 2020







### Houston as a CCUS hub

#### Why CCUS?

- CCUS essential to meet global climate targets
- Immediate emissions reductions from decarbonization
- Emission targets can't be achieved with clean energy alone
- Affordable, reliable, sustainable energy needed to reduce energy poverty

#### What Impacts?

- Long term sustainability of industries
- Set the stage for Houston as a decarbonization center of USA
- Globally recognized for energy skillset, knowledge, and technology
- Low carbon products advantage in global market

### Why Houston?

- "Energy capital to sustainable energy capital"
- Infrastructure and scale suitable for "cluster" economics
- Vast, proximal geologic storage resources
- Energy companies strategies are shifting to "net-zero"



UNIVERSITY of HOUSTON

C. T. BAUER COLLEGE of BUSINESS

Gutierrez Energy Management Institute



2



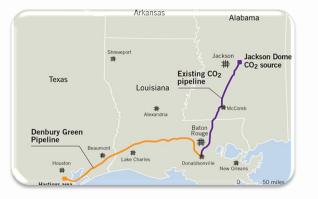
## **Objectives and Findings**

### Objectives

- Develop a staged 3x10yr CCUS deployment analysis roadmap
- Utilize the NPC national analysis construct and regionalize for local impacts
- Analyze the emissions AND economic investment impact in the Houston Area
- Assess and position CCUS "optionality" to alternative geologic formations for both storage and EOR – as well as -for the extended energy producing network in the greater US Gulf Coast in all directions from Houston
   FINDINGS
- Investment and risk hurdles will require "strategic investment"
- A mix of EOR and pure storage provides an investment portfolio approach for CCUS
- Current base of target geologies and infrastructure options are far greater than the stationary emissions in the 9 county Houston region long term expansion impact
- Federal, state and local government policies must support/accelerate this transition








# Key Challenges to Address in Project

#### Carbon Capture



#### Transportation



#### Storage

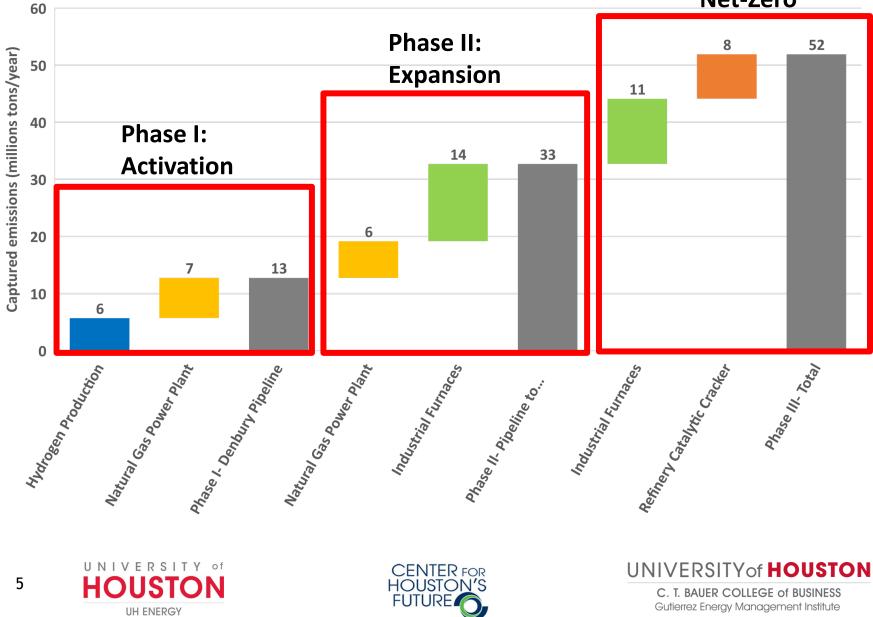


- Technology maturity
- Capture Cost of CO<sub>2</sub>
  (3/4 of total CCUS cost)
- Electricity cost for compression
- Separation cost to purify CO<sub>2</sub>

4

- Permits & Regulations
- Public acceptance
- Eminent Domain
- Cost of pipeline design and operating expense
- Infrastructure improvements

- Primacy
- Class 6 wells
- Low cost of oil
- Cost of surveillance (Liability for releases)
- Induced seismicity


UNIVERSITY of HOUSTON





### Taking Houston to Net-Zero

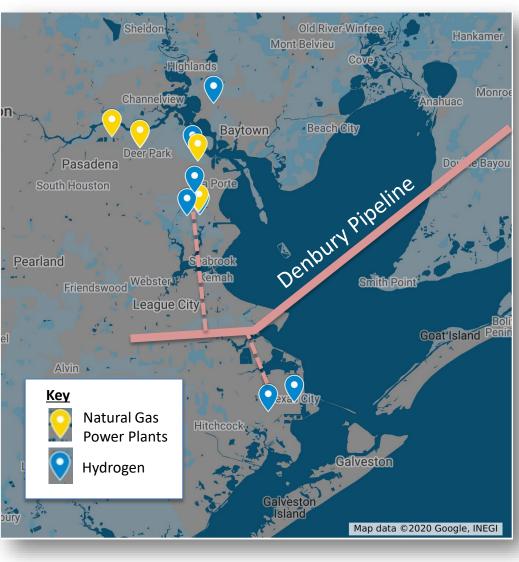




# Phase I: Activation (2030)

#### **Capture**

| Facility type               | Captured emissions<br>(MM tons/yr) | Total<br>investment<br>(bil US\$) |
|-----------------------------|------------------------------------|-----------------------------------|
| Hydrogen                    | 5.7                                | \$1.1                             |
| Natural gas<br>power plants | 7                                  | \$2.5                             |


#### **Transport**

6

| Pipeline | Available capacity<br>(MM tons/yr) | Total<br>investment<br>(bil US\$/yr) |
|----------|------------------------------------|--------------------------------------|
| Denbury  | 12.9                               | \$0.12                               |

- Hydrogen emissions prioritized due to cheaper capture cost.
- Natural gas power plants second due to increasing pressure from investors.
- Denbury currently utilized at 1/3 capacity.







#### UNIVERSITY of HOUSTON

# Phase I: Activation (2030)

#### **Storage**

| Location             | Available storage<br>(bil tons) | Total<br>investment<br>(bil US\$/yr) |
|----------------------|---------------------------------|--------------------------------------|
| Gulf Coast EOR       | 1.4                             |                                      |
| Gulf Coast<br>saline | 1,500                           | \$0.12                               |

- Significant EOR storage is available along Gulf Coast in the form of disparate oil fields.
- Denbury has identified multiple EOR fields along the pipeline's path.
- Saline storage is sufficient to handle Denbury capacity for 75 years.









### Phase I: Economic Model

#### **Discounted cash flow model**

- Phase I only
- Combined hydrogen/natural gas
- Denbury pipeline
- Toggle ratio of saline storage to EOR
- Outputs NPV and IRR

#### **Assumptions**

- NPC capture facility reference costs
- Gaffney Cline estimates for regional gas and electricity costs
- Discount rate: 12%
- Inflated oil, gas, and electricity annually

#### **Scenarios**

- **100% EOR scenario** and varied key inputs by +/-25%
- 100% saline scenario and varied key inputs by +/-25%
- Oil price/45Q rate required for positive NPV

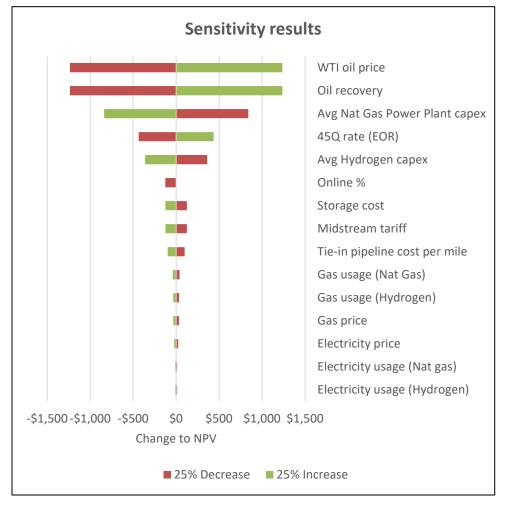
| la numbro                             |                    | units               |                                        | mptions            | Hydrogen C<br>units | Capex                      |                    | inits              | Opex                    |                    | units              |                    | Inpu                 | **                 | units             | Cap                  |              |
|---------------------------------------|--------------------|---------------------|----------------------------------------|--------------------|---------------------|----------------------------|--------------------|--------------------|-------------------------|--------------------|--------------------|--------------------|----------------------|--------------------|-------------------|----------------------|--------------|
| Inputs                                |                    | units               |                                        | nptions            | units               | Capes                      |                    | inits              | Opex                    |                    | units              |                    | Inpu                 | ts                 | units             | Cap                  | ex           |
|                                       |                    |                     | bbls produced per<br>metric ton of CO2 |                    |                     |                            |                    |                    |                         |                    |                    |                    |                      |                    |                   |                      |              |
| Captured emissions                    | 5,414,933          | tons/year           | injected                               | 2                  | barrels             | Multiplier                 | 13.54 X            |                    | Electricity usage       | 0.18               | MWh/ton            |                    | Captured emissions   | 7,040,654          | tons/year         | Multiplier           |              |
| Capacity per capture unit installed   | 400,000            | tons/year           | Project life                           | 20                 | /ears               | Capture capex (total)      | 1,063,289,854 \$   |                    | Electricity price       | 10                 | \$/MWhr            |                    | Capacity per capture | 1,504,290          | tons/year         | Capture capex (tota  | 2,468,93     |
| Online percentage                     | 100%               |                     | 45Q rate (EOR)                         | 35                 | S/metric ton        | 1st year capex             | 20% 9              | 6                  | Gas usage               | 2.55               | MMBtu/ton          |                    | Online percentage    | 100%               | %                 | 1st year capex       |              |
| % saline storage                      | 0%                 | S.                  | 45Q rate (saline)                      | 50                 | S/metric ton        | 2nd year capex             | 50% 9              | 6                  | Gas price               | 1                  | \$/MMBtu           |                    | % saline storage     | 0%                 | 96                | 2nd year capex       |              |
|                                       |                    |                     | WTI oil price                          | 40                 | \$/bbl              | 3rd year capex             | 30% 9              |                    | Opex, non-energy, annua | 2%                 | % of capex         |                    |                      |                    |                   | 3rd year capex       |              |
|                                       |                    |                     | Inflation                              | 3%                 |                     | Avg Hydrogen capex         | 78.545.000         |                    | Midstream tariff        | 10                 | S/ton              |                    |                      |                    |                   | Avg Nat Gas Power    | 527.5        |
|                                       |                    |                     | Tax rate                               | 21%                |                     | Tie-in pipeline cost per n |                    | /mile              | Storage cost            |                    | S/ton              |                    |                      |                    |                   |                      | 001,0        |
|                                       |                    |                     | Discount rate                          | 12%                |                     | Length of tie-in line      | 151 n              |                    |                         |                    |                    |                    |                      |                    |                   |                      |              |
|                                       |                    |                     | Depreciation                           |                    | /ears               | Total cost of tie-in line  |                    |                    |                         |                    |                    |                    |                      |                    |                   |                      |              |
|                                       |                    |                     |                                        |                    |                     |                            |                    |                    |                         |                    |                    |                    |                      |                    |                   |                      |              |
| Oil Price (infated annually)          | \$40.00            | \$41.00             | \$42.03                                | \$43.08            | \$44.15             | \$45.26                    | \$46.39            | \$47.55            | 5 \$48.74               | \$49.95            | \$51.20            | \$52.48            | \$53.80              | \$55.14            | \$56.5            | 2 \$57.93            |              |
| Gas price (inflated annually)         | \$2.00             | \$2.05              |                                        | \$2.15             | \$2.21              |                            | \$2.32             | \$2.38             | \$2.44                  |                    | \$2.56             | \$2.62             | \$2.69               | \$2.76             | \$2.8             |                      |              |
| Electricity price (inflated annually) | \$10.00            | \$10.25             | \$10.51                                | \$10.77            | \$11.04             | \$11.31                    | \$11.60            | \$11.89            | \$12.18                 | \$12.49            | \$12.80            | \$13.12            | \$13.45              | \$13.79            | \$14.1            | 3 \$14.48            |              |
|                                       |                    |                     |                                        |                    |                     |                            |                    |                    |                         |                    |                    |                    |                      |                    |                   |                      |              |
| Years                                 | 1                  | 2                   | 3                                      | 4                  | 5                   | 6                          | 7                  | 8                  | 3 9                     | 10                 |                    | 12                 |                      |                    |                   |                      |              |
| 45Q Revenue (saline storage)          | \$0.00             | \$0.00              |                                        |                    | \$0.00              |                            | \$0.00             | \$0.00             |                         |                    |                    | \$0.00             | \$0.00               |                    |                   |                      |              |
| 45Q Revenue (EOR storage)             | \$0.00             | \$0.00              | \$0.00                                 |                    | \$435,945,548.85    | \$435,945,548.85           | \$435,945,548.85   | \$435,945,548.85   |                         |                    |                    | \$435,945,548.85   |                      | \$435,945,548.85   |                   |                      |              |
| Petroleum revenue                     | \$0.00             | \$0.00              |                                        | \$1,073,064,399.01 | \$1,099,891,008.99  | \$1,127,388,284.21         | \$1,155,572,991.32 | \$1,184,462,316.10 | \$1,214,073,874.00      | \$1,244,425,720.85 | \$1,275,536,363.87 | \$1,307,424,772.97 | \$1,340,110,392.29   | \$1,373,613,152.10 | \$1,407,953,480.9 | \$1,443,152,317.93   | \$1,479,231  |
| Total Revenue                         | \$0.00             | \$0.00              | \$0.00                                 | \$1,509,009,947.86 | \$1,535,836,557.84  | \$1,563,333,833.06         | \$1,591,518,540.17 | \$1,620,407,864.95 | 5 \$1,650,019,422.85    | \$1,680,371,269.70 | \$1,711,481,912.72 | \$1,743,370,321.82 | \$1,776,055,941.14   | \$1,809,558,700.95 | \$1,843,899,029.7 | 5 \$1,879,097,866.78 | \$1,915,176, |
|                                       |                    |                     |                                        |                    |                     |                            |                    |                    |                         |                    |                    |                    |                      |                    |                   |                      |              |
| Hydrogen capture capex                | \$212,657,970.77   | \$531,644,926.93    | \$318,986,956.16                       |                    | \$0.00              |                            |                    | \$0.00             |                         |                    |                    | \$0.00             |                      |                    |                   |                      |              |
| Nat gas power plant capex             |                    | \$1,234,462,786.80  | \$740,677,672.08                       |                    | \$0.00              |                            | \$0.00             | \$0.00             |                         |                    |                    | \$0.00             |                      |                    |                   |                      |              |
| Tie-in line capex                     | \$100,666,666.67   | \$100,666,666.67    | \$100,666,666.67                       | \$0.00             | \$0.00              | \$0.00                     | \$0.00             | \$0.00             | \$0.00                  | \$0.00             | \$0.00             | \$0.00             | \$0.00               | \$0.00             | \$0.0             | 0 \$0.00             |              |
|                                       |                    |                     |                                        |                    |                     |                            |                    |                    |                         |                    |                    |                    |                      |                    |                   |                      |              |
| Electricity (Hydrogen)                | \$0.00             |                     |                                        |                    | \$10,758,731.86     | \$11,027,700.16            | \$11,303,392.66    | \$11,585,977.48    |                         |                    |                    | \$12,788,751.29    | \$13,108,470.07      |                    |                   | 7 \$14,116,388.53    |              |
| Gas (Hydrogen)                        | \$0.00             | \$0.00              | \$0.00                                 |                    | \$30,483,073.60     |                            | \$32,026,279.21    | \$32,826,936.19    |                         |                    |                    | \$36,234,795.32    | \$37,140,665.20      |                    |                   |                      |              |
| Opex, non-energy (Hydrogen)           | \$0.00             | \$0.00              |                                        |                    | \$21,265,797.08     | \$21,265,797.08            | \$21,265,797.08    | \$21,265,797.08    |                         |                    |                    | \$21,265,797.08    | \$21,265,797.08      |                    |                   |                      |              |
| Electricity (Natural gas)             | \$0.00             | \$0.00              | \$0.00                                 |                    | \$11,265,045.98     | \$11,265,045.98            | \$11,265,045.98    | \$11,265,045.98    |                         |                    |                    | \$11,265,045.98    | \$11,265,045.98      |                    |                   |                      |              |
| Gas (Natural gas)                     | \$0.00             | \$0.00              |                                        |                    | \$39,427,660.94     | \$39,427,660.94            | \$39,427,660.94    | \$39,427,660.94    |                         |                    |                    | \$39,427,660.94    | \$39,427,660.94      |                    |                   |                      |              |
| Opex, non-energy (Natural gas)        | \$0.00             | \$0.00              |                                        |                    | \$49,378,511.47     | \$49,378,511.47            | \$49,378,511.47    | \$49,378,511.47    |                         |                    |                    | \$49,378,511.47    | \$49,378,511.47      | \$49,378,511.47    |                   |                      |              |
| Transport tariff                      | \$0.00             | \$0.00              |                                        |                    | \$124,555,871.10    | \$124,555,871.10           | \$124,555,871.10   | \$124,555,871.10   |                         |                    |                    | \$124,555,871.10   | \$124,555,871.10     |                    | \$124,555,871.1   |                      | \$124,555    |
| Storage cost                          | \$0.00             | \$0.00              | \$0.00                                 | \$124,555,871.10   | \$124,555,871.10    | \$124,555,871.10           | \$124,555,871.10   | \$124,555,871.10   | \$124,555,871.10        | \$124,555,871.10   | \$124,555,871.10   | \$124,555,871.10   | \$124,555,871.10     | \$124,555,871.10   | \$124,555,871.1   | \$124,555,871.10     | \$124,555    |
| EBITDA (Rev-capex-opex)               | -\$807,109,752.16  | -\$1,866,774,380.40 | -\$1,160,331,294.91                    | \$1,098,325,282.41 | \$1,124,145,994.69  | \$1,150,612,224.78         | \$1,177,740,110.62 | \$1,205,546,193.61 | \$1,234,047,428.67      | \$1,263,261,194.61 | \$1,293,205,304.69 | \$1,323,898,017.53 | \$1,355,358,048.19   | \$1,387,604,579.62 | \$1,420,657,274.3 | 3 \$1,454,536,286.40 | \$1,489,262  |
|                                       |                    |                     |                                        |                    |                     |                            |                    |                    |                         |                    |                    |                    |                      |                    |                   |                      |              |
| Depreciation                          | \$547,745,061.07   | \$547,745,061.07    | \$547,745,061.07                       | \$547,745,061.07   | \$547,745,061.07    | \$547,745,061.07           | \$547,745,061.07   |                    |                         |                    |                    |                    |                      |                    |                   |                      |              |
|                                       | \$1,354,854,813.23 |                     | -\$1,708,076,355.98                    | \$550,580,221.35   | \$576,400,933.63    | \$602,867,163.71           | \$629,995,049.55   | \$1,205,546,193.61 | \$1,234,047,428.67      | \$1,263,261,194.61 | \$1,293,205,304.69 | \$1,323,898,017.53 | \$1,355,358,048.19   | \$1,387,604,579.62 | \$1,420,657,274.3 | 3 \$1,454,536,286.40 | \$1,489,262  |
| NOPLAT (EBIT*(1-Tax Rate))            | \$1,070,335,302.45 | -\$1,907,470,358.76 | -\$1,349,380,321.22                    | \$434,958,374.86   | \$455,356,737.57    | \$476,265,059.33           | \$497,696,089.15   | \$952,381,492.95   |                         | \$997,976,343.74   | \$1,021,632,190.71 | \$1,045,879,433.85 | \$1,070,732,858.07   | \$1,096,207,617.90 | \$1,122,319,246.7 | 2 \$1,149,083,666.26 | \$1,176,517  |
| FCF                                   | \$1,329,699,993.54 | -\$3,226,499,678.10 | -\$1,961,966,555.06                    | \$982,703,435.93   | \$1,003,101,798.63  | \$1,024,010,120.40         | \$1,045,441,150.22 | \$952,381,492.95   | \$974,897,468.65        | \$997,976,343.74   | \$1,021,632,190.71 | \$1,045,879,433.85 | \$1,070,732,858.07   | \$1,096,207,617.90 | \$1,122,319,246.7 | 2 \$1,149,083,666.26 | \$1,176,517, |
| PV of FCF                             | \$1,187,232,137.09 | -\$2,572,145,789.30 | -\$1,396,489,040.76                    | \$624,525,799.24   | \$569,186,899.56    | \$518,795,395.40           | \$472,904,483.98   | \$384,650,911.64   | \$351,557,800.52        | \$321,321,673.43   | \$293,694,842.01   | \$268,451,200.89   | \$245,384,335.59     | \$224,305,797.36   | \$205,043,530.3   | 2 \$187,440,437.24   | \$171,353    |
| Project NPV                           | \$113,543,909.91   |                     |                                        |                    |                     |                            |                    |                    |                         |                    |                    |                    |                      |                    |                   |                      |              |
|                                       |                    |                     |                                        |                    |                     |                            |                    |                    |                         |                    |                    |                    |                      |                    |                   |                      |              |
| IRR                                   | 12%                |                     |                                        |                    |                     |                            |                    |                    |                         |                    |                    |                    |                      |                    |                   |                      |              |





#### UNIVERSITY of **HOUSTON**

# Phase I: Economic Model Results


### Combined hydrogen and natural gas power plant model - 100% EOR

| Sensitivity 1                       |                   |               |  |  |  |  |  |
|-------------------------------------|-------------------|---------------|--|--|--|--|--|
| Base Case Assumptions (100% EOR)    |                   |               |  |  |  |  |  |
| Online %                            | 100               |               |  |  |  |  |  |
| bbls produced per metric ton of CO2 | 2                 | barrels       |  |  |  |  |  |
| 45Q rate (EOR)                      | \$35              | \$/metric ton |  |  |  |  |  |
| 45Q rate (saline)                   | \$50              | \$/metric ton |  |  |  |  |  |
| WTI oil price                       | \$40              | \$/bbl        |  |  |  |  |  |
| Avg Hydrogen capex                  | \$78,545,000.00   | \$/unit       |  |  |  |  |  |
| Avg Nat Gas Power Plant capex       | \$527,505,000.00  | \$/unit       |  |  |  |  |  |
| Tie-in pipeline cost per mile       | \$2,000,000.00    | \$/mile       |  |  |  |  |  |
| Length of tie-in line               | 151               | miles         |  |  |  |  |  |
| Electricity usage (Hydrogen)        | 0.18              | MWh/ton       |  |  |  |  |  |
| Electricity usage (Nat gas)         | 0.16              | MWh/ton       |  |  |  |  |  |
| Electricity price                   | \$10              | \$/MWhr       |  |  |  |  |  |
| Gas usage (Hydrogen)                | \$2.55            | MMBtu/ton     |  |  |  |  |  |
| Gas usage (Nat Gas)                 | \$2.80            | MMBtu/ton     |  |  |  |  |  |
| Gas price                           | \$2               | \$/MMBtu      |  |  |  |  |  |
| Opex, non-energy, annual            | 0.02              | % of capex    |  |  |  |  |  |
| Midstream tariff                    | \$10.00           | \$/ton        |  |  |  |  |  |
| Storage cost                        | \$10.00           | \$/ton        |  |  |  |  |  |
| NPV                                 | \$ 113,543,909.91 |               |  |  |  |  |  |
| IRR                                 | 12%               |               |  |  |  |  |  |

- Project can be NPV positive with 12% IRR today.....however
- US40/bbl price required for 20 years for project with high risk potential
- Most influential parameters include: oil price, recovery factor, nat gas capex, and 45Q rate



9







## Key Take-aways

#### • Phase I (present to 2030):

- Focus on low cost strategic CO<sub>2</sub> Houston emissions: 5.7million tons/yr from Hydrogen SMR
  7 million tons/yr from Natural Gas Power
- **Transport on existing/available Denbury pipeline:** 13 million ton/yr available capacity
- Gulf coast accessible geologic storage: 1.4 Billion tons for EOR and 1.5 Trillion tons of saline
- EOR most economically attractive with current tax credits BUT with Highest Risk
- Parameters needed for overall positive system NPV: (with 12% all equity hurdle)
  - 100% EOR storage requires \$40/bbl oil price PLUS 45Q credit of \$35/ton
  - 100% saline storage only requires 45Q Tax credit significantly above current \$50/ton
- Phase II (2040):
  - Expand capture to include: 6.4 million tons/yr from Natural Gas Power Plant
    13.5 million tons/yr from Industrial Processes Refining and Pet Chem
  - Build pipelines to the East/Central Texas: 20-30 million tons/yr available capacity at \$500 million cost (250 miles X US\$2 million/mile). On and offshore geologic target zones
  - East/Central Texas available storage: 3.6 billion tons for EOR and 500 billion tons of saline
- Phase III (2050):
  - Expand capture to include: 11.4 million tons/yr from Industrial Furnaces
    7.8 million tons/yr from Refinery Catalytic Cracker
  - Build pipeline to the Permian: 20 million tons/yr available capacity at US\$1 billion cost (500 miles X US\$2 million/mile)
  - **Permian available geologic storage:** 4.8 billion tons of EOR and 1 trillion tons of saline







Acknowledgements



### UNIVERSITY of **HOUSTON**

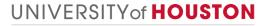
C. T. BAUER COLLEGE of BUSINESS Gutierrez Energy Management Institute





<u>Special thanks</u>: Jane Stricker, Mike Godec, Steve Melzer, Scott Nyquist, and Nigel Jenvey!

# Thank you!


# Appendix

- Phase I- Saline Economic Analysis (slide 13)
- Phase II- Analysis (slides 14-16)
- Phase III- Analysis (slides 17-19)
- Key Takeaways (slide 20)



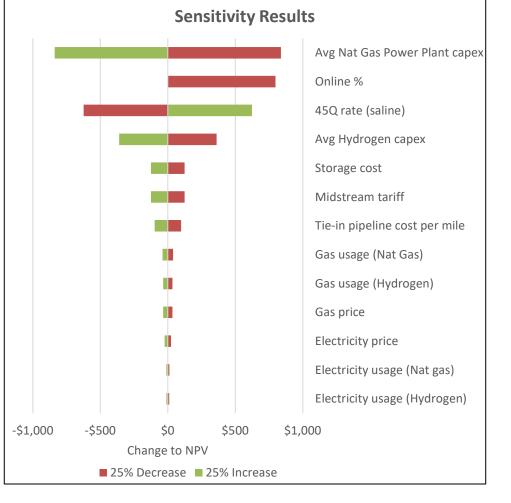
12





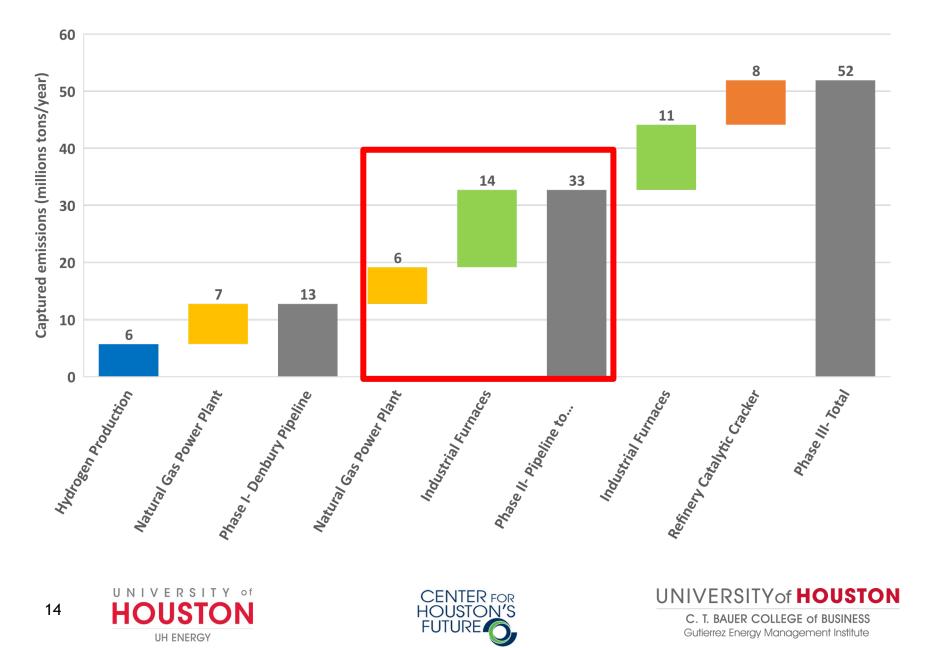
# Phase I: Economic Model Results

### Combined hydrogen and natural gas power plant model - 100% storage


| Sensitivity 2                       |                       |               |  |  |  |  |  |
|-------------------------------------|-----------------------|---------------|--|--|--|--|--|
| Base Case Assumptions (100% Saline) |                       |               |  |  |  |  |  |
| Online %                            | 100                   |               |  |  |  |  |  |
| bbls produced per metric ton of CO2 | 2                     | barrels       |  |  |  |  |  |
| 45Q rate (EOR)                      | \$35                  | \$/metric ton |  |  |  |  |  |
| 45Q rate (saline)                   | \$50                  | \$/metric ton |  |  |  |  |  |
| WTI oil price                       | \$40                  | \$/bbl        |  |  |  |  |  |
| Avg Hydrogen capex                  | \$78,545,000          | \$/unit       |  |  |  |  |  |
| Avg Nat Gas Power Plant capex       | \$527,505,000         | \$/unit       |  |  |  |  |  |
| Tie-in pipeline cost per mile       | \$2,000,000           | \$/mile       |  |  |  |  |  |
| Length of tie-in line               |                       | miles         |  |  |  |  |  |
| Electricity usage (Hydrogen)        | 0.18                  | MWh/ton       |  |  |  |  |  |
| Electricity usage (Nat gas)         | 0.16                  | MWh/ton       |  |  |  |  |  |
| Electricity price                   | <b>\$1</b> 0          | \$/MWhr       |  |  |  |  |  |
| Gas usage (Hydrogen)                | 2.55                  | MMBtu/ton     |  |  |  |  |  |
| Gas usage (Nat Gas)                 | 2.8                   | MMBtu/ton     |  |  |  |  |  |
| Gas price                           | \$2                   | \$/MMBtu      |  |  |  |  |  |
| Opex, non-energy, annual            | 0.02                  | % of capex    |  |  |  |  |  |
| Midstream tariff                    | \$10                  | \$/ton        |  |  |  |  |  |
| Storage cost                        | \$10                  | \$/ton        |  |  |  |  |  |
| NPV                                 | \$ (3,583,733,634.47) |               |  |  |  |  |  |
| IRR                                 | -3%                   |               |  |  |  |  |  |

- Project is grounded in 12% all equity return criteria....and....
- US\$+100/Ton 45Q price needed today for positive project @12% all equity
- Most influential parameters include: capex, online %, 45Q rate, hydrogen and NGCC capex




13





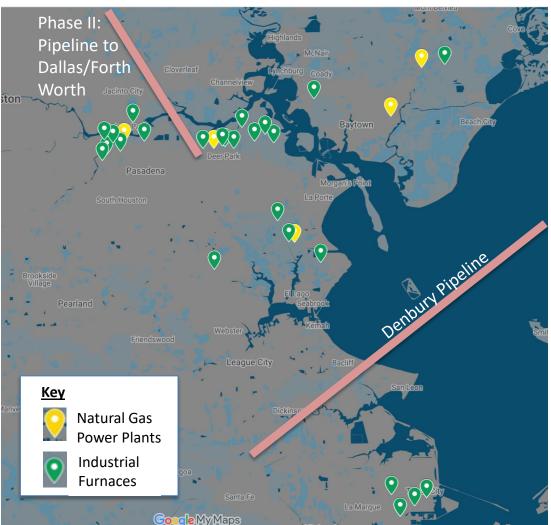
UNIVERSITY of **HOUSTON** 

### Phase II: Expansion - FW Basin and Offshore



# Phase II: Expansion (2040)

### **Capture**


| Facility Type              | Captured<br>emissions (MM<br>tons/yr) | Total<br>Investment (bil<br>US\$) |
|----------------------------|---------------------------------------|-----------------------------------|
| Natural Gas<br>Power Plant | 6.4                                   | 2.2                               |
| Industrial<br>Furnaces     | 13.5                                  | 6.4                               |

### <u>Transport</u>

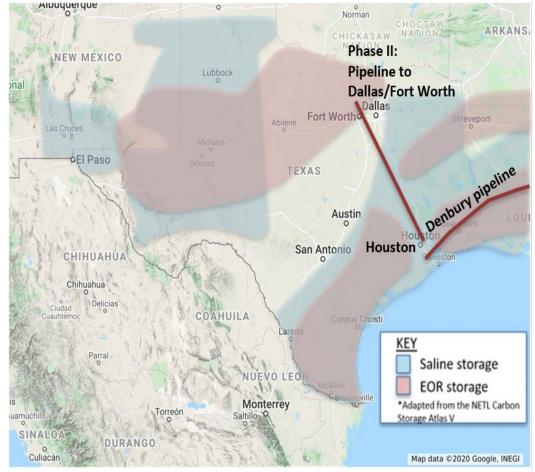
| Pipeline              | Available<br>capacity (MM<br>tons/yr) | Total Investment<br>(bil US\$) |
|-----------------------|---------------------------------------|--------------------------------|
| East/Central<br>Texas | 20                                    | \$0.5                          |

- Build 250-Mile Houston -to-East/Central Texas Pipeline
- Industrial Furnaces are included to expand annual capture of CO<sub>2</sub>
- Additional Natural Gas Power Plants are involved in the expansion of capacity transportation







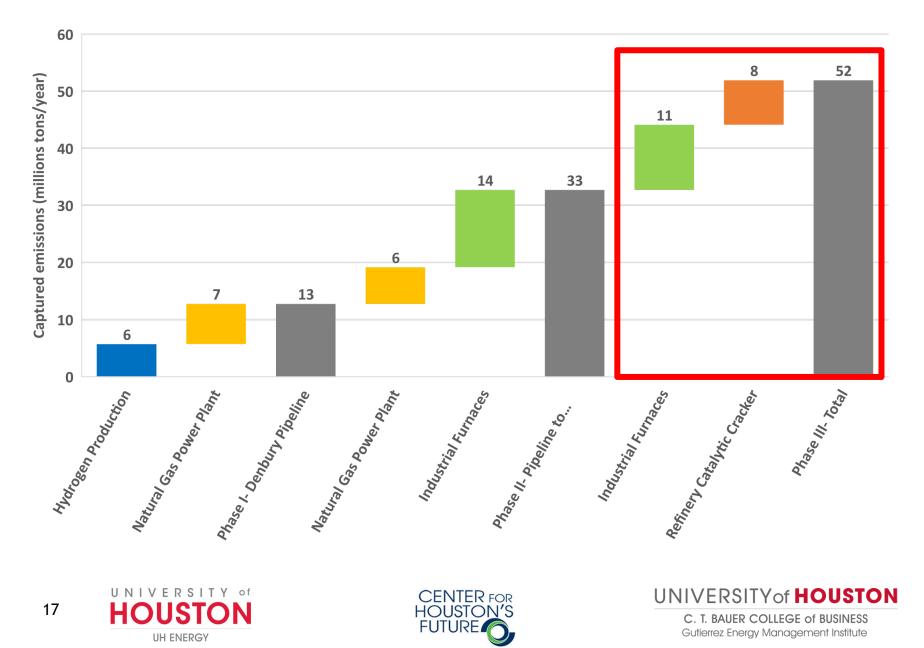

#### UNIVERSITY of **HOUSTON**

# Phase II: Expansion (2040)

### **Storage**

| Location                     | Available storage<br>(bil tons) | Total Investment<br>(bil US\$/yr) |
|------------------------------|---------------------------------|-----------------------------------|
| East/Central<br>Texas EOR    | 3.6                             |                                   |
| East/Central<br>Texas saline | 501                             | TBD                               |

- EOR and Saline storage is available in East/Central Texas
- Leveraging the demand for CO<sub>2</sub> EOR, offering a relatively larger economic benefit







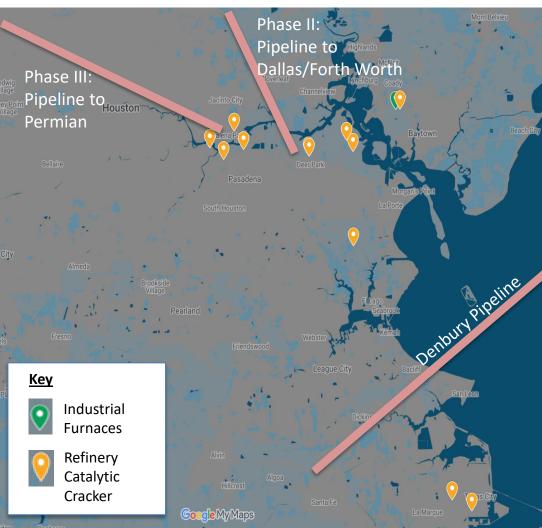

UNIVERSITY of **HOUSTON** 

### Phase III: At-Scale - Taking Houston to Net Zero



# Phase III: At-Scale (2050)

### <u>Capture</u>


| Facility Type              | Captured<br>emissions<br>(MM<br>tons/yr) | Total<br>Investment<br>(bil US\$) |
|----------------------------|------------------------------------------|-----------------------------------|
| Industrial Furnaces        | 11.4                                     | 2.8                               |
| Refinery Catalytic Cracker | 7.8                                      | 1.4                               |

### **Transport**

| Pipeline | Available<br>capacity (MM<br>tons/yr) | Total Investment<br>(bil US\$) |
|----------|---------------------------------------|--------------------------------|
| Permian  | 20                                    | \$1                            |

- Build 500-Mile Houston -to- Permian
  Pipeline
- **Refinery Catalytic Cracker** are included to expand annual capture of CO<sub>2</sub>
- Projected pipeline from Houston to the Permian Basin will help with the economic feasibility of both carbon capture and pipeline projects



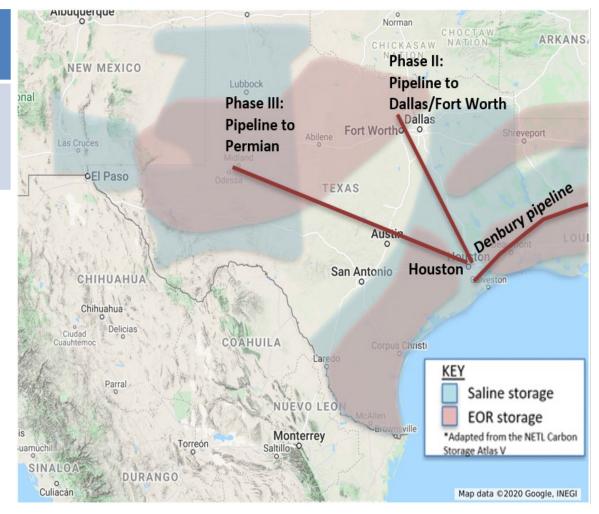


**UNIVERSITY of HOUSTON** 

C. T. BAUER COLLEGE of BUSINESS

Gutierrez Energy Management Institute




# Phase III: At-Scale (2050)

### <u>Storage</u>

19

| Location          | Available storage<br>(bil tons) | Total<br>Investment (bil<br>US\$/yr) |
|-------------------|---------------------------------|--------------------------------------|
| Permian<br>EOR    | 4.8                             |                                      |
| Permian<br>saline | 1000                            | TBD                                  |

- Large-scale of EOR and saline storage available in the Permian Basin
- Storage capacity in the Permian will permit to achieve net-zero in carbon goal







#### UNIVERSITY of **HOUSTON**

## Key Take-aways

#### • Phase I (present to 2030):

- Focus on low cost strategic CO<sub>2</sub> Houston emissions: 5.7million tons/yr from Hydrogen SMR
  7 million tons/yr from Natural Gas Power
- **Transport on existing/available Denbury pipeline:** 13 million ton/yr available capacity
- Gulf coast accessible geologic storage: 1.4 Billion tons for EOR and 1.5 Trillion tons of saline
- EOR most economically attractive with current tax credits BUT with Highest Risk
- Parameters needed for overall positive system NPV: (with 12% all equity hurdle)
  - 100% EOR storage requires \$40/bbl oil price PLUS 45Q credit of \$35/ton
  - 100% saline storage only requires 45Q Tax credit significantly above current \$50/ton
- Phase II (2040):
  - Expand capture to include: 6.4 million tons/yr from Natural Gas Power Plant
    13.5 million tons/yr from Industrial Processes Refining and Pet Chem
  - Build pipelines to the East/Central Texas: 20-30 million tons/yr available capacity at \$500 million cost (250 miles X US\$2 million/mile). On and offshore geologic target zones
  - East/Central Texas available storage: 3.6 billion tons for EOR and 500 billion tons of saline
- Phase III (2050):
  - Expand capture to include: 11.4 million tons/yr from Industrial Furnaces
    7.8 million tons/yr from Refinery Catalytic Cracker
  - Build pipeline to the Permian: 20 million tons/yr available capacity at US\$1 billion cost (500 miles X US\$2 million/mile)
  - **Permian available geologic storage:** 4.8 billion tons of EOR and 1 trillion tons of saline





